论文链接:https://doi.org/10.1016/j.applthermaleng.2025.126708
Highlights
高环境压力下稀薄甲烷预混火焰的撞壁淬熄特性.
撞壁淬熄距离测定及处理方法.
撞壁淬熄,壁面传热及近壁火焰传播三者关系的分析.
基于近壁区域参数展开的微观火焰撞壁过程分析.
摘要
近壁火焰淬熄是火花点火式发动机中产生未燃碳氢化合物排放的主要原因之一。特别是对稀燃的天然气发动机而言,近壁淬熄导致的甲烷逃逸会带来不可忽视的温室效应。然而在与发动机缸内接近的高压下以及超稀薄条件下的近壁淬熄研究较为匮乏,该研究对探究甲烷逃逸产生机制以及在仿真中实现未燃碳氢化合物预测有重要作用,因此本文中针对这一内容展开研究,定量测量了高压下稀薄火焰淬熄距离,应用高速纹影法及CH*自发光显微摄影研究了甲烷层流稀薄火焰在近壁区域的淬熄以及火焰传播特性。研究中基于层流火焰厚度结果讨论了火焰前锋结构与火焰淬熄的相互作用,并根据实验测量的壁面温度及热流结果计算了近壁区域的热梯度。进行了无量纲分析(努塞尔数Nu及佩克莱数Pe)并探究火焰淬熄与壁面传热过程关系。研究结果表明淬熄距离在稀燃范围内随当量比增加呈现指数减小趋势,并且在淬熄极限附近(ϕ= 0.5)有显著变化。虽然近壁区域热梯度随着当量比的增加而变大,但是因为当量比提高后燃烧反应活性增加,淬熄距离呈现下降趋势。本文研究中在初始环境压力0.5~3.0 MPa范围内,淬熄距离随压力的增加而减小,近壁热梯度则随压力增加而增大。无量纲分析结果也表明了在稀薄条件和高压下壁面传热过程对火焰淬熄存在重要的影响。
Abstract
The flame quenching at the near-wall region plays the most significant role on the unburned hydrocarbon (UHC) emission in spark ignition engines. Especially for lean-burn nature gas engines, near-wall quenching results in a large amount of methane slip which leads to an unneglectable greenhouse effect. Research on flame quenching under ultra-lean combustion and at elevated pressures are lacking, which contributes to UHC prediction in lean-burn nature gas engines. In this study, quantitative measurements of the quenching distance for lean CH4/air laminar premixed flames were carried out at elevated pressures. Deep insight of near-wall quenching behaviors and flame propagation characteristics for laminar premixed CH4/air flames were proposed through simultaneous high-speed schlieren and CH* chemiluminescence micrography. Laminar flame thicknesses of different equivalence ratios were released to reveal the relation between the flame front structure and wall-quenching characteristics, and the effects of flame front structure on the near-wall quenching were evaluated. Normal thermal gradient of the boundary layer at the near-wall region was calculated through the measured heat flux by employing high-speed heat flux sensors. Furthermore, dimensionless parameters as Nusselt number (Nu) and Peclet number (Pe) were derived to clarify the relation between the wall heat transfer and near-wall flame quenching. The result shows that quenching distances decrease exponentially with larger equivalence ratios, while reaching a significantly large distance near the lean limit (ϕ= 0.5) in this study. Although thermal gradients increase rapidly with larger equivalence ratios, the higher reactivity resulting from larger equivalence ratios overweighs the thermal gradient effect, leading to smaller quenching distances. The quenching distance is inversely proportional to the initial ambient pressure at the range of 0.5~3 MPa in this study. The wall thermal gradient, however, enhances with the increase of the initial ambient pressure. Due to the dimensionless analysis, the wall heat transfer shows a strong effect on the near-wall flame quenching significantly under elevated pressures and lean combustion conditions.
Graphics
图1 实验系统 (a)系统整体布置 (b)定容弹内布置
图4 光程积分的CH*自发光显微摄影图像处理流程及淬熄距离确定方法
图5 当量比为0.55时不同初始环境压力下的层流燃烧速率及修正压力后结果对比
图 10撞壁淬熄过程壁面温度变化及壁面热流变化
(a)当量比为0.55时不同初始环境压力下结果
(b)初始环境压力为2.0 MPa时不同当量比下的结果
图11 稀薄甲烷火焰淬熄距离(实线)及近壁热梯度(虚线)
(a)当量比为0.55时不同初始环境压力下的结果
(b)初始环境压力为2.0 MPa时不同当量比下的结果
图12 当量比为0.55时不同初始环境压力下雷诺数、努塞尔数与淬熄佩克莱数趋势对比
图13 初始环境压力为2.0 MPa时不同当量比下雷诺数、努塞尔数与淬熄佩克莱数趋势对比
选自微信公众号 LERC